A Frobenius group is a transitive permutation group F on a finite set X such that no member of $F^{\#}$ fixes more than one point of X and some member of $F^{\#}$ fixes at least one point of X.

THEOREM (Frobenius). If $H \subset F$ (*F* finite), $H^a \cap H = 1$ for all $a \in F \setminus H$, and *K* is the set of elements of *F* not in any conjugate of $H^{\#}$, then *K* is a normal subgroup of *F*.

THEOREM (Zassenhaus). For each odd prime p, the Sylow p-subgroups of F_x are cyclic, and the Sylow 2-subgroups are either cyclic or quaternion. If F_x is not solvable, then it has exactly one nonabelian composition factor, namely A₅.

THEOREM (Scott). If *F* is a finite transitive permutation group such that if $x \in F^{\#}$, then Ch(x) = 0 or 1, then the set $K = \{x \in F \mid Ch(x) = 0 \text{ or } x = 1\}$ is a regular, normal subgroup of *F*.

Structure of the Frobenius group of order 20:

A presentation of the group is $F = \langle c, f | c^5 = f^4 = 1, cf = fc^2 \rangle$.

c = (1,2,3,4,5)f = (1,2,4,3)

F is a one-dimensional affine group $AGL_1(G)$ over some (commutative) field G.

F is sharply 2-transitive.

 $F \cong \operatorname{Aut}(F) = \operatorname{Inn}(F).$

F contains a fixed-point free subgroup $K = \langle c | c^5 = 1 \rangle \cong C_5$, called the *Frobenius kernel*. (In this context, it consists only of translations.) When *H* has even order, *K* is abelian. It is regular, hence |K| = |X|, and normal in (a finite) *F*. Each non-trivial element in *K* has the same order (5), by *F*'s being 2-transitive. It is also the centralizer $C_F(c)$ of any $c \in K$. *K* is a nilpotent group. Aut $(K) \cong F/K \cong C_4$.

F contain a proper nontrivial subgroup $H = \langle f | f^4 = 1 \rangle \cong C_4$, which fixes a point $x \in X$. *H* is called the *Frobenius complement*. It (the conjugacy class of stabilizers) is a trivial intersection set (TI-set) in *F*. It is abelian. It is also the centralizer $C_F(f)$ of any $f \in H$. *H* is its own normalizer: $H = N_F(H)$. It is determined up to conjugacy in *F*. $H = F_x$ acts regularly on each of its orbits on $X \setminus \{x\}$. *H* has exactly one element of order 2 (when *H* has even order). When *X* is finite, this implies that $|F_x|$ divides |X|-1. |Aut(H)| = 2.

F is faithfully represented as a Frobenius group by right multiplication on the coset space F/H.

Distinct elements of *K* lie in distinct right F_x -cosets (for some, or all $x \in X$).

The right regular representation of F yields a simply-transitive group F' that acts on F.

For all $x, y \in X$, there is at most one element $k \in K$ such that $x^k = y$.

F is a semidirect product HK of K by H (by K's being normal, and H's being a complement to K).

H acts semiregularly on *K*; that is, $C_H(k) = 1$ for each $k \in K^{\#}$, or equivalently $C_K(h) = 1$ for each $h \in H^{\#}$.

F contains a nonabelian subgroup $D = \langle f^2, g^2 | f^4 = g^4 = (f^2 g^2)^5 = 1 \rangle \cong D_{10}$. *D* is normal in *F*. |F/D| = 2. Aut(*D*) \cong *F*, and Inn(*D*) \cong *D*.

Conjugacy classes: [1], $[c] = [c^2] = [c^3] = [c^4]$, [f] = [g] = [h] = [k] = [m], $[f^2] = [g^2] = [h^2] = [k^2] = [m^2]$, $[f^3] = [g^3] = [h^3] = [k^3] = [m^3]$