Indications – pour ceux qui ont tout essayé...

- ▶1) L'application nulle est dérivable en tout point!
- \triangleright **4)** f(1+1+...1) puis $qf(\frac{p}{q}x)$. Tout nombre positif est un carré dans \mathbb{R} .

Il existe des automorphismes non continus de \mathbb{C} , mais il est des secrets qui doivent rester cachés. . .

⊳7) Une somme sur $g \in G$ est la même à l'ordre près qu'une somme indexée par $f \circ g, g \in G$. $\forall x \in E, g \circ p \circ g^{-1}(x) \in F$. Tout élément de F est invariant par p.

Pour calculer $q \circ q$ on remplace UN terme seulement par la définition, pour l'autre on laisse q afin d'utiliser ce qui précède.

- \triangleright 8) \triangle est nilpotent. Il faut vérifier que L est bien un endo!
- ⊳11) Il suffit de montrer la stabilité par les trois lois.
- \triangleright **12)** $\mathfrak{u} \lambda_1$ id zigouille x_1 et multiplie x_i par $\lambda_i \lambda_1 \neq 0$. Itérer.
- **▶13)** Je propose 6 méthodes :
 - 1. En résolvant formellement le système Y = TX.
 - 2. En utilisant la notion de *drapeau* stable : il y a un suite de sev E_k de dimension $k=1\dots n$ tels que $E_k\subset E_{k+1}$ et chacun est stable par l'endomorphisme associé à T.
 - 3. L'application $M \to TM$ est linéaire injective sur l'algèbre des matrices triangulaires, d'où surjective.
 - 4. T^{-1} est un polynôme en T.
 - 5. Raisonner par récurrence en considérant des matrices triangulaires par blocs.
 - 6. La comatrice d'une matrice triangulaire est aussi triangulaire.
- **▶14)** En dim finie condition de dim.

En dim infinie il faut que G soit isomorphe à un supplémentaire de F.

- \triangleright **15)** $u^{n+1} = u \circ u^n$ ou $u^n \circ u$. Ça dépend de la question. . .
 - En dimension infinie on peut montrer que les deux composantes sont supplémentaires par la définition.

On veut écrire $x \in E$ sous la forme $u^r(y) + (x - u^r(y))$ avec $(x - u^r(y))$ dans K_r , trouver y en conséquence en utilisant que $J_{2r} = J_r$.

- \triangleright **16)** À savoir faire. On applique f^{n-1} à la combinaison linéaire égale à 0.
- \triangleright 17) $f^2(x)$ est proportionnel à f(x) car tous les vecteurs images sont colinéaires. De plus f(x) engendre Im sauf si $x \in \text{Ker}$.
- ▶18) Dans l'exemple on trouve un sev de dim 2 (engendré par I, M).
- \triangleright **19)** Déjà $\mathfrak{u}^2 = \mathfrak{0} \iff \operatorname{Im} \mathfrak{u} \subset \operatorname{Ker} \mathfrak{u}$.
- \triangleright **20)** Si Ker f \neq Ker f² montrer qu'il existe un $x \in E$ tel que $f(x) \neq 0 = f^2(x)$ et montrer (en factorisant P) qu'alors $P(f)(x) \neq 0$, absurde (x et f(x) doivent être indépendants).
- \triangleright **21)** Un sens est trivial. On fait une récurrence sur $\mathfrak{p}=\dim E-\dim F=\dim E-\dim G$. Trivial si $\mathfrak{p}=0$ (!). Si $\mathfrak{p}=1$, on a deux hyperplans. Leur réunion n'est pas E donc il existe un vecteur a qui n'est ni dans F ni dans G, il engendre une droite supplémentaire commun.

Si on a deux sev F, G de codimension p, on leur rajoute un vecteur $\mathfrak a$ qui n'est ni dans l'un ni dans l'autre et on obtient $F' = F \oplus \mathbb K.\mathfrak a$, $G' = G \oplus \mathbb K.\mathfrak a$ qui sont deux sev de même codimension p-1 et par HR possèdent un supplémentaire commun S. Alors $S \oplus \mathbb K.\mathfrak a$ devrait convenir.