ARCS PARAMÉTRÉS

EXERCICE 1. On considère l'arc ($x = \cos^3 t$, $y = \sin^3 t$, $z = \cos 2t$). Symétries, période? Tous ses points sont-ils **réguliers**? Y a-t-il des points à tangente verticale?

EXERCICE (EAT MUTATEM RESURGO).

On considère la fonction définie en polaires par $\rho = e^{m\theta}$ (spirale logarithmique), autrement dit $x = e^{m\theta} \cos \theta, y = e^{m\theta} \sin \theta$. Trouver une propriété liant la tangente au point M et le vecteur \vec{OM} .

Étudier la propriété réciproque : si on a un arc plan de classe \mathcal{C}^1 tel que le vecteur dérivé au point M fasse un angle constant avec OM, est-ce une spirale logarithmique?

- **EXERCICE 3.** Hélice circulaire. On paramètre une hélice par $x = a \cos t, y = a \sin t, z = ct$. Montrer que le couple (x,y) vérifie une relation simple $\forall t \in \mathbb{R}$. Montrer que la tangente à la courbe fait un angle constant avec l'horizontale.
- **EXERCICE 4.** Tracé du trifolium de Descartes : on considère la courbe d'équation $x^3 + y^3 = 3\alpha xy$ où $\alpha > 0$ est un paramètre pour pas avoir l'air trop NH. En posant t = y/x, trouver une paramétrisation de cette courbe. A-t-on bien tous les points quand t décrit \mathbb{R} ? Tracer cette courbe, en précisant sa symétrie. On étudiera le comportement de x + y quand $t \to -1$.
- **EXERCICE 5.** On considère un arc paramétré $t\mapsto f(t)$ de classe \mathcal{C}^2 de \mathbb{R}^2 ou \mathbb{R}^3 euclidien. Montrer que la quantité $\frac{\|f'(t)\wedge f''(t)\|}{\|f'(t)\|^3}$ définie en tout point régulier est invariante par changement de paramètre. Que vaut-elle par exemple sur un cercle?
- **EXERCICE 6.** On considère l'arc plan $(x = a cos^3 t, y = a sin^3 t)$ (astroïde). La tracer. Calculer l'équation de la tangente au point de paramètre t, montrer qu'elle coupe les axes en deux points dont la distance est constante.
 - * Réciproque (HP)? [on pourra déjà dériver l'équation de la tangente écrite au point de paramètre t sous la forme a(t)x(t) + b(t)y(t) = c(t), avec les fonctions a,b,c trouvées ci-dessus.].
- **EXERCICE 7.** À quelle condition la droite $y-y_0=p(x-x_0)$ coupe-t-elle l'ellipse $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$ en deux points confondus? [se ramener à une équation de degré 2 en x et annuler son discriminant]

C'est alors une tangente (cf. le cas du cercle).

Peut-on avoir deux telles tangentes à l'ellipse qui soient perpendiculaires? Quelle condition vérifient alors (x_0, y_0) ?

En déduire le lieu des points d'où l'on voit cette ellipse sous un angle droit (**l'orthoptique** de l'ellipse).

EXERCICE 8. Montrer que la relation $x^y = y^x, y \neq x$ définit une courbe y = f(x), à certaines conditions que l'on précisera. * Tracer cette courbe, à l'aide d'une paramétrisation (poser t = y/x) ou grâce à l'étude de la fonction $\varphi(u) = \ln(u)/u$.

2

EXERCICE 9. On considère deux points (F,F') de cordonnées respectives (-c,0) et (c,0) ainsi qu'un réel a > c > 0. Montrer que la condition MF + MF' = 2a équivaut (si on prend M = (x,y) à $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$. Paramétrer cette ellipse. Trouver l'équation de la normale en un point M, vérifier que cette normale est la bissectrice de \overline{MF} , $\overline{MF'}$ (premier petit théorème de Poncelet).

EXERCICE 10. On considère la cycloïde (mouvement suivi par un point d'une roue de vélo) paramétrée $\begin{cases} x = a(t-\sin t) \\ y = a(1-\cos t) \end{cases}$ (a > 0 fixé). Montrer que la courbe est périodique, au sens où le point de paramètre $t + 2\pi$ est translaté du point de paramètre π .

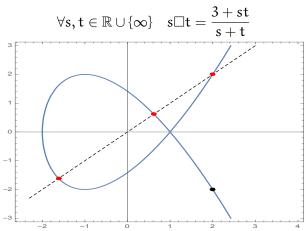
Justifier que $t\mapsto x(t)$ est une bijection croissante de $\mathbb R$ dans $\mathbb R$, dérivable. Sa fonction réciproque est-elle encore dérivable?

En déduire que quand $0 < x < 2\pi\alpha$, la courbe est le graphe d'une fonction $y = \phi(x)$ (on n'explicitera pas la fonction ϕ) et calculer par changement de variable l'aire $\int_0^{2\pi\alpha} \phi(x) \, dx$ comprise entre cette courbe et l'axe (Ox) (rép. $3\alpha^2\pi$).

EXERCICE 11. Montrer que la courbe d'équation $x^3 - 3x + 2 = y^2$ peut se paramétrer par $t = \frac{y}{x-1}$. On trouvera $x = t^2 - 2$, $y = t^3 - 3t$. Tracer cette courbe à l'aide de la fonction $x \mapsto \sqrt{x+2}(x-1)$.

a) * (calculatoire) Montrer que les points de paramètres s,t et $r=-\frac{3+st}{s+t}$ sont alignés.

On définit alors une loi de composition interne sur la courbe de la façon suivante : étant donnés deux points S,T de paramètres s et t, leur « produit » est le symétrique R' (par rapport à (Ox)) du point R de paramètre r où la droite (ST) recoupe la courbe (si S=T on prend la tangente). Algébriquement, on pose donc



- b) Montrer que la loi $\hfill\Box$ est commutative et associative.
- c) Vérifier que ∞ est élément neutre (calculer $\lim_{t\to\infty} s\Box t$) et que le symétrique pour la loi \Box du point de paramètre s est son symétrique géométrique, de paramètre -s.
- d) Calculer $s\Box s$. Le groupe que l'on a ainsi défini est-il isomorphe à (\mathbb{R}^*,\times) ?
- e) On pose $m(s) = \binom{s-3}{1-s}$. Calculer $m(s)\binom{t}{1}, m(s)m(t)$ et enfin $m(s)m(t)\binom{1}{0}$. Quels sont les valeurs propres de ces matrices ? (les vecteurs propres sont indépendants de s et valent $(\pm \sqrt{3}, 1)$)