Intégration sur un intervalle quelconque

par Emmanuel AMIOT

30 janvier 2020

NB: dans tout ce chapitre, on se limite à des fonctions continues par morceaux. C'est une limitation inhérente à notre programme et qui sera levée dans la suite de vos études de mathématiques. Les hypothèses portant sur la régularité de la fonction intgrée sont donc moins importantes, voire superfétatoires.

Intégration sur $[a, +\infty]$

On se place sur un intervalle $I = [a, +\infty[$. avec a fini. Une fonction continue, ou même continue par morceaux, a bien une intégrale sur [a,x]: $F(x) = \int_a^x f$ est bien définie. Il est naturel de se demander si F(x) admet une limite quand $x \to +\infty$.

Exemple:

Considérons la fonction sinus cardinal (qui est mieux que \mathcal{C}^{∞} puisque DSE) sur $I = [0, +\infty[$. On

- 1. La série $(\sum_{n\pi} \int_{n\pi}^{(n+1)\pi} sinc)$ est alternée : par changement de variable on a $\int_{n\pi}^{(n+1)\pi} sinc =$ $(-1)^n \int_0^{\pi} \frac{\sin t}{t + n\pi} dt$.
- 2. Elle vérifie le critère spécial : en effet comme sin est positive sur $[0,\pi]$ on a

$$\forall t \in [0,\pi] \ 0 \leqslant \frac{\sin t}{t+(n+1)\pi} \leqslant \frac{\sin t}{t+n\pi} \quad \text{ et de plus } \quad 0 \leqslant \int_0^\pi \frac{\sin t}{t+n\pi} \leqslant \frac{1}{n} \to 0.$$

Donc la série alternée converge, i.e. $F(n\pi)$ admet une limite quand n (entier) tend vers $+\infty$.

3. Si
$$x \in \mathbb{R}$$
 et $n\pi \leqslant x < (n+1)\pi$ alors $|F(x) - F(n\pi)| \leqslant \int_{n\pi}^{x} \frac{1}{n\pi} \leqslant \frac{1}{n}$.

On en déduit que F(x) admet bien une limite quand x (réel) tend vers $+\infty$ (on démontrera plus tard que cette limite vaut $\pi/2$).

Exemple:

- $x \mapsto e^{-\alpha x}$ a une intégrale convergente sur $[0, +\infty[$ pour tout $\alpha > 0$ (car $\int_0^x e^{-\alpha t} dt \to 1/\alpha$).
- la fonction $\phi:t\mapsto \frac{t-\lfloor t\rfloor}{t^2}$ est continue par morceaux seulement (discontinue en chaque point entier) mais son intégrale sur $[1,+\infty[$ converge. En fait on peut calculer

$$\int_{1}^{n} \phi(t) dt = \ln n - \sum_{k=1}^{n-1} \int_{k}^{k+1} \frac{k}{t^{2}} dt = \ln n - \sum_{k=1}^{n-1} k \left(\frac{1}{k} - \frac{1}{k+1} \right) = \ln n - \sum_{k=1}^{n-1} \left(1 - \frac{k}{k+1} \right) = \ln n - \sum_{k=1}^{n-1} \frac{1}{k+1} = \ln n - \sum_{k=1}^{n-1} \frac{1}{k+$$

et on retrouve la constante d'Euler en passant à la limite! d'où $\int_1^\infty \phi = 1 - \gamma$ (pour \int_1^x on dit que c'est $\int_1^{\lfloor x \rfloor}$ + un o(1) comme pour le sinc). • attention $\int_0^n \cos(\pi t) \, dt = 0$ converge quand $n \to +\infty$ (n entier) mais \int_0^x n'a pas de limite en $+\infty$ (x

1.1 Intégrale convergente

DÉFINITION 1. Une fonction f, continue par morceaux, de $[a, +\infty[$ dans \mathbb{R} ou \mathbb{C} , a une intégrale convergente si la fonction $F: x \mapsto \int_a^x f$ a une limite en $+\infty$. Dans ce cas on note

$$\int_{\alpha}^{+\infty} f = \lim_{x \to +\infty} F(x) = \lim_{x \to +\infty} \int_{\alpha}^{x} f.$$

Par passage à la limite des propriétés connues de l'intégrale sur le segment [a,x] il vient

PROPOSITION. — Si f est positive et a une intégrale convergente alors $\int_{\alpha}^{\infty} f \geqslant 0$.

— Si f \leqslant g et si $\int_{\alpha}^{\infty} f$ et $\int_{\alpha}^{\infty} g$ convergent, alors $\int_{\alpha}^{\infty} f \leqslant \int_{\alpha}^{\infty} g$.

— Si $\int_{\alpha}^{\infty} f$ et $\int_{\alpha}^{\infty} g$ convergent alors $\int_{\alpha}^{\infty} \lambda f + \mu g$ aussi et $\int_{\alpha}^{\infty} (\lambda f + \mu g) = \lambda \int_{\alpha}^{\infty} f + \mu \int_{\alpha}^{\infty} g$.

— Si b \geqslant a alors la convergence de l'intégrale $\int_{\alpha}^{+\infty} f$ équivaut à celle de $\int_{b}^{+\infty} f$, et

1.2 Intégrabilité sur $I = [a, +\infty[$

DÉFINITION 2. Une fonction f, continue par morceaux de $[\alpha, +\infty[$ dans \mathbb{R} ou \mathbb{C} est dite **intégrable** $\begin{cases}
\text{si l'intégrale} & \text{if lest convergente. On dit aussi bien (comme pour les séries) que l'intégrale} \\
\text{de f est absolument convergente.}
\end{cases}$

Notons que ces deux définitions sont bien différentes; certes, elles coïncident pour des fonctions à valeurs positives, mais la fonction sinc étudiée ci-dessus n'est pas intégrable bien qu'admettant

une intégrale! (en effet $\int_0^{n\pi} |\operatorname{sinc}| = \sum_{k=0}^{n-1} \int_0^{\pi} \frac{\sin t}{t + k\pi} dt$ et cette série diverge car son TG est minoré par

 $\int_0^\pi \frac{\sin t}{k\pi} \, dt = \frac{2}{k\pi}, \text{ terme général d'une série harmonique). On parle dans ce cas d'intégrale$ **semi**-convergente (cf. la série harmonique alternée). Comme les gros théorèmes de la dernière partie ne fonctionnent que pour des fonctions intégrables (et pas pour des intégrales semi-convergentes) on va se concentrer sur cette condition plus forte et laisser de côté, sauf exception, les intégrales semi-convergentes.

L'intérêt est que (comme pour la convergence absolue des séries) il y a un lien, et que l'une est plus maniable que l'autre. En effet, on a pour les fonctions positives une CNS analogue à celle sur les séries :

LEMME 1. L'intégrale d'une fonction f **positive** est convergente ssi les intégrales sur des segments sont bornées : $f\geqslant 0 \ \ \text{et} \ \ \exists M \ \ \forall x\geqslant \alpha \qquad F(x)=\int_{-x}^{x}f\leqslant M$

En effet F est alors croissante et majorée, et réciproquement on peut prendre $M = \int_{0}^{\infty} f$.

Exemple fondamental: Les fonctions $x\mapsto 1/x^\alpha$ sont intégrables sur $[1,+\infty[$ ssi $\alpha>1,$ par calcul direct de $\int_{\alpha}^x \frac{dt}{t^\alpha} = \frac{1}{\alpha-1}\left(1-\frac{1}{x^{\alpha-1}}\right)\leqslant \frac{1}{\alpha-1}$. On en déduit

THÉORÈME 1. Si f est intégrable sur $[a, +\infty[$ alors l'intégrale de f est convergente (aussi).

C'est donc, comme pour les séries simples ou doubles, une CS pour que l'intégrale existe mais pas une CN.

Démonstration. Commençons par supposer f à valeurs réelles.

On utilise la décomposition $f = f_+ - f_-$ où f_+, f_- sont des fonctions positives : il suffit de poser $f_+ = Max(f,0)$ et $f_- = Max(-f,0)$. On a de plus $|f| = f_+ + f_-$. Il en résulte que f_+ et f_- ont une intégrale convergente, puisque (par exemple)

$$\int_{\alpha}^{x} f_{+} \leqslant \int_{\alpha}^{x} |f| \leqslant M.$$

Par linéarité, f aussi.

On étend ce résultat aux fonctions à valeurs dans C, par combinaison des parties réelles et imaginaires : en effet si |f| est intégrable alors

$$|\operatorname{Re} f|, |\operatorname{Im} f| \leqslant |f| \Rightarrow \ \forall x \geqslant \alpha \ \int_{\alpha}^{x} |\operatorname{Re} f|, |\operatorname{Im} f| \leqslant \int_{\alpha}^{x} |f| \leqslant M$$

et donc l'intégrabilité de f prouve celle des ses parties rélles et imaginaires, qui ramène au cas précédent. On conclut par linéarité.

REMARQUE 1. On peut comparer les deux intégrales, celle de f et celle de sa valeur absolue : par passage à la limite de l'inégalité bien connue sur les segments, il vient (si f intégrable sur I)

$$\left| \int_{I} f \right| \leqslant \int_{I} |f|$$

1.3 **Critères**

PROPOSITION (CRITÈRE DE DOMINATION). f est intégrable sur I ssi il existe une fonction q positive, notoirement intégrable telle que $|f| \leq q$.

En pratique, comme on n'a pas de problème pour intégrer une fonction continue par morceaux sur un segment, et comme

$$F(x) = \int_{a}^{x} f = \int_{a}^{b} f + \int_{b}^{x} = C^{te} + G(x),$$

il suffit d'avoir une telle domination au voisinage de $+\infty$. En conséquence, on a plus généralement

PROPOSITION. Soit q une fonction positive intégrable sur $I = [a, +\infty[$. Alors les conditions suivantes suffisent à prouver l'intégrabilité de f (continue par morceaux sur I) :

- -- $|f| \le g \text{ sur } I;$ -- $f(x) = O(g(x)) \text{ quand } x \to +\infty;$ -- $f(x) \sim g(x) \text{ quand } x \to +\infty.$

En particulier on a, comme pour les séries numériques, des comparaisons de référence :

PROPOSITION (CRITÈRE DE RIEMANN).

Si f, continue par morceaux sur $I = [a, +\infty[(a > 0), vérifie f(x) = O(1/x^{\alpha})]$ au voisinage $de +\infty$ avec $\alpha > 1$, alors f est intégrable.

On utilise parfois l'autre sens : si par exemple $f(x) \sim 1/x$ en $+\infty$ ou plus généralement $f(x) \sim$ $1/x^{\beta}$, $\beta \leq 1$ en $+\infty$, alors on a la non-intégrabilité.

Bien entendu la réciproque est fausse, il n'est d'ailleurs même pas nécessaire que f tende vers 0 en ∞ pour être intégrable.

EXERCICE 1. Fabriquer une fonction f continue, nulle en dehors des intervalles $[n-1/n^3, n-1/n^3]$ pour $n \ge 2$ et telle que f(n) = n avec f intégrable sur $[1, +\infty[$.

Exemple: Les fonctions $x \mapsto \frac{1}{x^2+1}, \frac{e^{i\omega x}}{1+x^2}, \frac{\ln(x+1)}{x^2+1}$ sont intégrables sur \mathbb{R}_+ .

Exemple:

- 1. L'intégrale $\int_{[0,+\infty[} \frac{dt}{1+t^2}$ existe et vaut $\pi/2 = \lim_{+\infty} \arctan$.
- 2. L'intégrale $\int_{[2,+\infty[} \frac{dt}{t \ln t}$ diverge.

1.4 Intégrer sur un intervalle quelconque

1.4.1 Intervalle semi-ouvert

DÉFINITION 3. Soit I = [a, b[où b est fini ou pas. On dit que $\int_a^b f$ converge si la fonction $F : x \mapsto \int_a^x f$, définie sur I, admet une limite en b^- . f est intégrable sur I ssi $\int_a^b |f|$ converge.

On a les mêmes propriétés, notamment l'intégrabilité entraı̂ne la convergence de l'intégrale. On a pour $b < +\infty$ un critère de Riemann fini, *qui est l'exact inverse de celui en* $+\infty$:

PROPOSITION. La fonction $x\mapsto \frac{1}{(b-x)^{\alpha}}$ est intégrable sur $I=[\mathfrak{a},\mathfrak{b}[$ ssi $\alpha<1$

C'est le même résultat pour la fonction $x\mapsto \frac{1}{|b-x|^{\alpha}}$ par définition de l'intégrabilité.

Retenir que $\frac{1}{\sqrt{x}}$ est intégrable en 0^+ mais pas $\frac{1}{x^{3/2}}$, alors que c'est le contraire en $+\infty$. 1/x quant à elle n'est intégrable ni en 0 ni en $+\infty$.

REMARQUE 2.

- 1. Si f est continue (par morceaux) sur I = [a,b] un segment, on a l'intégrale habituelle! En fait, pour une fonction intégrable (à valeurs positives), l'existence d'une intégrale sur [a,b] donne l'existence des intégrales sur [a,b], [a,b[,]a,b[.
- 2. Il ne faut pas croire qu'une fonction intégrable sur $[0, +\infty[$ par exemple soit nécessairement nulle à l'infini, ou même bornée : un exemple simple de fonction non bornée d'intégrale nulle est $x \mapsto x^2 \mathbf{1}_{\mathbb{N}}(x)$.

1.4.2 Chasles

Observons que si f est intégrable sur un intervalle $I = [\mathfrak{a}, \mathfrak{b}[$ alors f l'est encore sur tout sous-intervalle (immédiat en revenant à la définition, le seul cas à considérer étant $[\mathfrak{c}, \mathfrak{b}[]$). Dans ce cas on a de plus (par passage à la limite de la relation usuelle)

$$\int_{a}^{b} f = \int_{a}^{c} f + \int_{c}^{b} f$$

Ceci est pratique mais permet surtout de définir

1.4.3 Intégration sur un intervalle ouvert

DÉFINITION 4. f est intégrable sur I =]a, b[(a, b finis ou pas) ssi pour un $c \in I$ quelconque on a f intégrable sur]a, c] et sur [c, b[. On pose alors

$$\int_{a}^{b} f = \int_{a}^{c} f + \int_{a}^{b} f$$

En vertu du principe de Jules Cesar, "divide et impera", il suffit donc d'étudier l'intégrabilité aux

bornes de l'intervalle. C'est ainsi qu'on établit l'intégrabilité : d'abord la continuité à l'intérieur de I, ensuite étude en chaque borne.

Attention à ne pas omettre de vérifier la qualité de la fonction DANS l'intervalle I. Par exemple $x\mapsto 1/x^2$ est bien intégrable en $+\infty$ et en $-\infty$, mais pas sur $\mathbb R$ (gros souci en 0).

- **Exemple**: La fonction $\frac{1}{\sqrt{1-x^2}}$ est intégrable sur] -1, 1[, soit par comparaison : $\frac{1}{\sqrt{1-x^2}} \sim \frac{1}{\sqrt{2(1-x)}}$ (resp. $\sim \frac{1}{\sqrt{2(1+x)}}$) au voisinage de 1 (resp. de -1) qui est notoirement intégrable par le critère de Riemann
 - par le critère pour les fonctions positives tout simplement puisque

$$\forall X \in [0, 1[\int_0^X \frac{\mathrm{d}x}{\sqrt{1 - x^2}} = \operatorname{Arc} \sin X \leqslant \pi/2$$

et de même pour]-1,0].

Attention à cette dernière méthode qui ne marche que pour des fonctions positives. En revanche elle nous donne immédiatement la valeur de l'intégrale, soit π .

 $\textbf{\textit{Exemple}} : Soit \; x > 0 \; fixé. \; La \; fonction \; t \mapsto t^{x-1} e^{-t} \; est$

- Continue pour $t \in]0, +\infty[= I]$.

 $\sim t^{x-1} = \frac{1}{t^{1-x}}$ quand $t \to 0^+$ et donc intégrable en 0, car 1-x < 1.
- $--=o(\frac{1}{t^2})$ en $+\infty$ par croissance comparée et donc intégrable en $+\infty$.

Elle est donc intégrable sur I, et on pose $\Gamma(x) = \int_{a}^{+\infty} t^{x-1} e^{-t} \, dt.$

1.4.4 Relations de comparaison

On a un raffinement de la condition d'intégrabilité ci-dessus :

THÉORÈME (INTÉGRATION DES RELATIONS DE COMPARAISON). Soit f continue par morceaux sur l'intervalle I = [a, b[et soit g une fonction positive et intégrable. Alors au voisinage de b

— Si f = O(g), on a vu que f est intégrable; et de plus quand $x \to b$ on a $\int_{x}^{b} f = O\left(\int_{x}^{b} g\right)$.

- Si f = o(g) alors f est toujours intégrable et par surcroît $\int_{a}^{b} f = o\left(\int_{a}^{b} g\right)$.
- Si f \sim g alors non seulement les deux intégrales sont de même nature, mais $\int_{a}^{b} f \sim$ $\int_{a}^{b} g \to 0$ dans le cas de convergence, et $\int_{a}^{x} f \sim \int_{a}^{x} g \to +\infty$ dans le cas de divergence.

Ce théorème résulte facilement des précédents, la rédaction de sa démonstration est laissée au lecteur à titre d'entraînement. Attention, on parle bien d'intégrabilité et pas de convergence d'intégrale : par exemple l'intégrale de de $\int_0^\infty \frac{\sin t}{t} dt$ converge, mais la fonction équivalente $\frac{\sin t}{t} + \frac{\sin^2 t}{t \ln t}$ a une intégrale divergente (croyez-moi sur parole).

1.5 Techniques de calcul

1.5.1 Primitivation

Le plus simple (comme pour les intégrales ordinaires) est d'exhiber une primitive qui admette des limites en a et en b : on a alors

PROPOSITION.

$$\int_{a}^{b} f = [F]_{a}^{b} = \lim_{b} F - \lim_{a} F \quad o\dot{a} \quad F' = f \quad sur \quad]a, b[$$

$$\textit{Exemple}: \int_0^1 \ln t \, dt = \left[t \ln t - t\right]_0^1 = -1. \text{ De même, } \int_0^{+\infty} \frac{dt}{1 + t^2} = \left[\arctan t\right]_0^{+\infty} = \frac{\pi}{2}.$$

Il est licite d'utiliser la notation $[F]^b_a = \lim_b F - \lim_a F$ à condition que ces limites existent! (ce qui se justifiera le plus souvent par croissance comparée), que a, b soient finis ou pas.

NB : cette technique – primitive...– fonctionne pour des intégrales convergentes comme absolument convergentes.

1.5.2 Changement de variable

Il est possible aussi de faire des changements de variable, avec un peu plus de précautions que dans le cas d'un segment :

PROPOSITION. Soit φ est une bijection de classe \mathcal{C}^1 de I sur J, **strictement croissante**; alors $\int_J f$ et $\int_I (f \circ \varphi) \times \varphi'$ sont de même nature, et on a en cas de convergence $\int_J f(\varphi(t)) \varphi'(t) dt = \int_J f$

$$\int_{I} f(\varphi(t)).\varphi'(t) dt = \int_{J} f(\varphi(t)).\varphi'(t) dt$$

Démonstration. Pour fixer les idées prenons $I=]\alpha,\beta[$ et J=]a,b[(on peut montrer que J est nécessairement ouvert quand I l'est – ϕ^{-1} est continue aussi à cause de la croissance). Alors pour $\gamma\in I,c=\phi(\gamma)\in J$ on a par des intégrales sur des segments

$$\int_{\gamma}^{x} f(\varphi(t)).\varphi'(t) dt = \int_{c}^{\varphi(x)} f = F \circ \varphi(x)$$

quand $x \to \beta$ on a bien $\phi(x) \to b$ et donc a les intégrales $\int_{\gamma}^b f(\phi(t)).\phi'(t)\,dt$ et $\int_c^b f$ qui sont bien de même nature (convergentes, absolument convergentes), et ont même valeur en cas de convergence. De même du côté de α , tout ceci parce que l'intégrale est fonction continue de sa borne supérieure (F est continue).

Exemple: Calculons $I = \int_{0}^{\pi} \frac{1}{2 + \cos x} dx$.

D'abord on écrit par découpage et changement de variable $I = \int_0^{\pi/2} \frac{4}{4 - \cos^2 x} dx$.

Ensuite on pose légalement $t = \tan x$ (règle de BIOCHE) ce qui donne

$$I = \frac{4}{3} \int_0^\infty \frac{1}{4/3 + t^2} dt = \frac{4}{3} \left[\sqrt{\frac{3}{4}} \arctan\left(x\sqrt{\frac{3}{4}}\right) \right]_0^\infty = \frac{\pi}{\sqrt{3}}$$

Dans le cas où le changement de variable est strictement décroissant on adapte facilement le théorème précédent, grâce à la convention $\int_b^a f = -\int_a^b f$: on aura alors

$$\int_I f(\phi(t)).\phi'(t)\,dt = -\int_I f$$

 $\textit{Exemple} : \text{Considérons} \int_0^\infty \frac{\sin \omega t}{t} \, dt. \; \text{Quand} \; \omega > 0, \; I = J = [0, +\infty[\; \text{et on peut écrire sans ambages}]$

$$\int_0^\infty \frac{\sin \omega t}{t} dt = \int_0^\infty \frac{\sin x}{x} dx$$

par l'homothétie $t\mapsto \omega t$. Mais attention! pour $\omega<0$, notre bijection devient décroissante et d'ailleurs $J=]-\infty,0[!$ On a alors

$$\int_0^\infty \frac{\sin \omega t}{t} dt = \int_0^{-\infty} \frac{\sin x}{x} dx = -\int_{-\infty}^0 \frac{\sin x}{x} dx$$

c'est à dire le résultat opposé. En fait

$$\omega \mapsto \int_0^\infty \frac{\sin \omega t}{t} dt = \begin{cases} \pi/2 & \text{si } \omega > 0 \\ -\pi/2 & \text{si } \omega < 0 \\ 0 & \text{si } \omega = 0 \end{cases}$$

 $\textbf{\textit{Exemple}} : L'int\'egrale \int_{\mathbb{R}} sin(e^t) \, dt \ est \ convergente \ (mais \ pas \ absolument \ convergente), \ car \ le \ chandra de la convergente \ (mais \ pas \ absolument \ convergente), \ car \ le \ chandra de la convergente \ (mais \ pas \ absolument \ convergente), \ car \ le \ chandra de la convergente \ (mais \ pas \ absolument \ convergente), \ car \ le \ chandra de la convergente \ (mais \ pas \ absolument \ convergente), \ car \ le \ chandra de la convergente \ (mais \ pas \ absolument \ convergente), \ car \ le \ chandra de la convergente \ (mais \ pas \ absolument \ convergente), \ car \ le \ chandra de la convergente \ (mais \ pas \ absolument \ convergente), \ car \ le \ chandra de la convergente \ (mais \ pas \ absolument \ convergente), \ car \ le \ chandra de la convergente \ (mais \ pas \ absolument \ convergente), \ car \ le \ chandra de la convergente \ (mais \ pas \ absolument \ convergente), \ car \ le \ chandra de la convergente \ (mais \ pas \ absolument \ convergente), \ car \ le \ chandra de la convergente \ (mais \ pas \ absolument \ convergente \ chandra de la convergente \ (mais \ pas \ absolument \ convergente \ chandra de la convergente \ (mais \ pas \ absolument \ convergente \ chandra de la convergente \ (mais \ pas \ absolument \ convergente \ chandra de la convergente \ (mais \ pas \ absolument \ convergente \ chandra de la convergente \ (mais \ pas \ absolument \ convergente \ chandra de la convergente \ chandra de la convergente \ (mais \ pas \ absolument \ convergente \ chandra de la convergente \ (mais \ pas \ absolument \ convergente \ chandra de la convergente \ (mais \ pas \ absolument \ chandra de la convergente \ chandra de la convergente \ (mais \ pas \ absolument \ chandra de la convergente \ (mais \ pas \ absolument \ chandra de la convergente \ chandra de la convergente \ (mais \ pas \ absolument \ chandra de la convergente \ chandra de la convergente \ (mais \ pas \ absolument \ chandra de la convergente \ chandra de la convergente \ (mais \ absolument$ gement de variable bijectif strictement croissant etc $x=e^t$ ramène à l'intégrale du sinus cardinal e^∞ sinc. Encore un exemple d'une intégrale convergente bien que la fonction ne tende carrément pas vers 0 en ∞ ... Remarque : le programme stipule que des changements de variable simples (translation, homothétie, puissance, logarithme) peuvent être appliqués sans faire de chichis. En revanche, un changement de variable en $x = \sin t$, tant par exemple nécessitera de bien préciser quels sont les intervalles utilisés et de vérifier que la fonction est bien bijective et strictement croissante.

Exemple: Il n'est pas judicieux de faire $t = \tan x$ pour calculer $\int_0^\pi \frac{dx}{1 + \cos^2 x}$. La règle de Bioche le recommande certes, mais trouver une intégrale de 0 à 0 n'est pas satisfaisant!

1.5.3 Intégration par parties

Enfin, on peut de même faire (toujours en passant à la limite sr les relations connues sur les segments) des intégrations par parties :

PROPOSITION. Si f et g sont deux applications de classe C^1 telles que f'g et fg' soient intégrables, ET SI f.g admet des limites aux bornes de I =]a, b[alors les intégrales $\int_a^b f'g$ et $\int_a^b fg'$ sont de même nature, avec dans le cas de convergence

$$\int_{a}^{b} f'g = [fg]_{a}^{b} - \int_{a}^{b} fg' \quad o\dot{u} \quad [fg]_{a}^{b} = \lim_{b} fg - \lim_{a} fg$$

En fait, il suffit que deux des trois quantités fassent sens pour que l'égalité ait lieu (CV + CV = CV). En pratique, on part d'une intégrale et il faudra vérifier la convergence du crochet (en général par croissance comparée) pour en déduire la convergence de l'autre intégrale. **Exemple:** $\int_0^1 -\ln t.t^n \, dt = \left[-\ln t \frac{t^{n+1}}{n+1}\right]_0^1 + \int_0^1 \frac{t^{n+1}}{t(n+1)} = \frac{1}{(n+1)^2} \text{ car par croissance comparée } t^{n+1} \ln t \to 0 \text{ en } 0.$

Exemple:
$$\int_0^1 -\ln t \cdot t^n dt = \left[-\ln t \frac{t^{n+1}}{n+1}\right]_0^1 + \int_0^1 \frac{t^{n+1}}{t(n+1)} = \frac{1}{(n+1)^2}$$
 car par croissance comparée $t^{n+1} \ln t - 0$ en 0.

Par ailleurs, on (re)démontre que l'intégrale du sinus cardinal est convergente par une intégration par parties:

$$\int_0^\infty \frac{\sin t}{t}\,dt = \left[\frac{1-\cos t}{t}\right]_0^\infty + \int_0^\infty \frac{1-\cos t}{t^2}\,dt \to \int_0^\infty \frac{1-\cos t}{t^2}\,dt$$

car la fonction $\frac{1-\cos t}{t^2}$, continue car DSE (!!!), est intégrable sur \mathbb{R}_+ par comparaison à $1/t^2$ en $+\infty$ (contrairement au sinus cardinal). Noter le choix habile de la primitive $1-\cos$ de sin qui permet un prolongement par continuité des fonctions considérées. En particulier le crochet fait sens [et vaut 0], par continuité en 0 et par croissance comparée en $+\infty$ (c'est légal de procéder directement à l'i.p.p. sur cet intervalle mais à condition de bien justifier l'existence du crochet).

Un dernier exemple classique : pour $x \in \mathbb{N}$ on a $\Gamma(x+1) = x!$. En effet

$$\Gamma(x+1) = \int_0^{+\infty} t^x e^{-t} \, dt = \left[-e^{-t} t^x \right]_0^{+\infty} + \int_0^{+\infty} e^{-t} x \, t^{x-1} \, dt = 0 \text{ (par c.c.) } + x \Gamma(x)$$

et on reconnaît la récurrence des factorielles, avec la même initialisation puisque $\Gamma(1)=\int_{1}^{+\infty}e^{-t}\,dt=0$ $[-e^{-t}]_0^{+\infty}=1$. La fonction Γ interpole donc sur les réels positifs la fonction factorielle qui n'a de sens que pour les entiers.

1.6 Espace des fonctions intégrables

Notons bien que $\int_I f$ peut très bien être nulle quand f est une fonction positive non nulle : par exemple, si $f = \mathbf{1}_{\mathbb{N}}$. Pour avoir une norme digne de ce nom, on se restreindra aux fonctions continues :

THÉORÈME 3. Soit $\mathcal{L}^1_C(I)$ l'espace vectoriel des applications continues, intégrables, de I dans \mathbb{C} . Alors on définit une norme sur $\mathcal{L}^1_C(I)$, dite norme de la convergence en moyenne, par l'application

$$f\in\mathcal{L}^1_C(I)\mapsto N_1(f)=\|f\|_1=\int_I|f|$$

La vérification est immédiate, en particulier l'inégalité triangulaire découle de celle qui est connue pour les intégrales sur un segment et

$$\int_I |f|=0 \Rightarrow \int_{[a,b]} |f|=0 \Rightarrow f|_{[a,b]}=0 \text{ (par continuit\'e de f)}$$

pour tout segment $[a,b] \subset I$ puisque $|f| \geqslant 0$! Le fameux – et précieux – lemme est donc encore vrai sur un intervalle qui n'est pas un segment :

LEMME 2. Une fonction positive, **continue**, intégrable sur I, a une intégrale nulle ssi c'est la fonction nulle sur I.

Dire que la suite (f_n) converge en moyenne vers f signifie donc que $\|f - f_n\|_1 = \int_T |f - f_n| \to 0$.

On a donc a fortiori $\int_I f_n \to \int_I f$, puisque

$$\left| \int_{I} (f - f_n) \right| \leqslant \int_{I} |f - f_n|$$

Dans le cadre des intégrales sur un segment, on avait vu qu'en cas de convergence *uniforme* de la suite (f_n) vers f, on avait convergence en moyenne, et en particulier

$$\lim \int f_n = \int \lim f_n$$

Ceci n'est plus vrai sur un intervalle quelconque : ainsi pour $f_n(t)=\frac{t^n}{n!}e^{-t}$ et $I=[0,+\infty[$ on a la convergence uniforme vers l'application nulle 1 , et pourtant $\int_I f_n=1 \not\to 0$. Cependant, avec la même démonstration que sur un segment, on a

THÉORÈME 4. Si une suite de fonctions intégrables (f_n) de $\mathcal{L}^1_C(I)$ converge **uniformément** sur I **borné**, alors on a aussi convergence en moyenne, et surtout $\lim_{n \to \infty} \int f_n = \int \lim_{n \to \infty} f_n$

Démonstration. En effet, en notant f la limite (continue comme on sait) de f_n on a, en notant spdg $I=]\mathfrak{a},\mathfrak{b}[,$

$$\left| \int_{I} f - \int_{I} f_{n} \right| = \left| \int_{I} (f - f_{n}) \right| \leqslant \int_{I} |f - f_{n}| \leqslant \int_{\alpha}^{b} \|f - f_{n}\|_{\infty} = (b - \alpha) \|f - f_{n}\|_{\infty} \to 0$$

(cette preuve est déficiente car on a passé sous silence l'existence de l'intégrale de f. Mais ce théorème sera rendu inutile par le théorème de convergence dominée *infra*).

^{1.} Étudier la fonction pour trouver le maximum $f_n(n)$ et utiliser la formule de Stirling.

REMARQUE 3. On peut aussi définir des espaces de fonctions **de carré intégrable** (voire même d'autres puissances) et les normes associés (comme la norme en convergence quadratique), mais cela est hors-programme.

2 Théorèmes sur les suites d'intégrales

L'intérêt de la notion de fonction intégrable — qui pose certains problèmes, notamment avec les intégrales impropres qui échappent à cette théorie — est la puissance des théorèmes de convergence que nous allons énoncer dans cette partie. Ils sont bien plus commodes, et plus faciles à utiliser, que ceux qui concernent la convergence uniforme (en revanche, les démonstrations sont difficiles!).

La philosophie générale est la suivante : sous réserve d'une hypothèse de **domination** (par une fonction positive intégrable), on aura le droit *d'intervertir les limites*, et par exemple d'écrire que la limite des intégrales est l'intégrale de la limite, etc. . .

2.1 Convergence dominée

On fait connaissance d'une classe très importante, et très utile, de théorèmes : ceux où l'on suppose la domination de tous les termes par un même objet. Ici, on prend une suite (f_n) de fonctions à valeurs réelles ou complexes, continues par morceaux et telles qu'il existe une fonction dominante ϕ (continue par morceaux, positive, intégrable) ie

$$\forall n \in \mathbb{N} |f_n| \leqslant \varphi$$

On suppose bien évidemment que $f_{\mathfrak{n}}\to f$ simplement, le problème étant d'arriver à une formule du genre

$$\int_{I} \lim f_{n} = \lim \int_{I} f_{n}$$

Bien sûr, une telle formule est fausse en général (sans l'hypothèse de convergence dominée) 2 comme le montre l'exemple suivant :

$$\int_0^{\pi/2} (n+1) \sin^n t \cos t \, dt = 1 \text{ alors que } (n+1) \cos^n \ t \sin t \to 0 \text{ en tout } t \text{ r\'eel.}$$

On mesure mieux l'intérêt de l'hypothèse de convergence dominée en observant le graphe de cette fonction, qui possède une « bosse glissante » de hauteur arbitrairement grande (prendre $t\approx\pi/2n$).

Un autre contre-exemple, déjà mentionné : on a $\int_0^{+\infty} \frac{t^n e^{-t}}{n!} dt = 1 \quad \forall n \in \mathbb{N}$ bien que l'intégrande tende vers 0 – et même uniformément sur I! Mais si on trace les graphes de cette famille de fonctions, on « voit » qu'une fonction qui majorerait toute la famille serait « du genre » de $t \mapsto 1/\sqrt{t}$ qui n'est pas intégrable, cf. Fig. $\ref{eq:total_series}$?

Enfin, un exemple qui marche:

$$\int_{0}^{+\infty} \frac{e^{itx}}{t^2 + x^2} dt \to 0 \quad \text{quand } x \to +\infty$$

en prenant
$$\varphi(t) = \frac{1}{t^2 + 1} - pour x \geqslant 1!$$

Voici l'énoncé:

^{2.} Noter que cette hypothèse est uniforme – sur $\mathfrak n$.

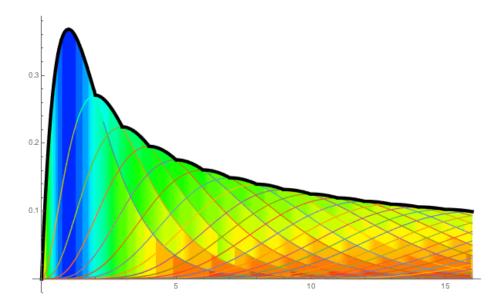


FIGURE 1 - Une éventuelle fonction "dominante" serait non intégrable

THÉORÈME DE CONVERGENCE DOMINÉE.

- ullet Si (f_n) est une suite de fonctions continues par morceaux, dominées par ϕ intégrable sur $I: \textit{c'est à dire que } \left[\exists \phi \textit{ continue par morceaux, intégrable sur } I \mid \forall n \mid f_n | \leqslant \phi \right] \text{,}$
- et si $f_n \to f$, continue par morceaux, simplement sur I, alors f est intégrable; la suite $(\int_I f_n)$ converge; $\int_I f = \int_I \lim f_n = \lim \int_I f_n$

et l'intégrande tend simplement vers 0. 3

• En revanche la suite $\int_0^\infty \frac{e^{-t/n}}{n}\,dt$ ne tend pas vers 0! On peut s'amuser à chercher la meilleure ϕ possible dans ce cas (Sup $\frac{e^{-t/n}}{n}=1/t$) pour comprendre que l'hypothèse de domination ne fonctionne pas.

^{3.} Pas en t=0, où la suite de fonctions reste égale à 1, mais la fonction limite est « presque » la fonction nulle, et d'intégrale égale à 0.

REMARQUE 4.

- La démonstration est admise (elle fait trois pages en petits caractères). Néanmoins on peut envisager de la faire avec des hypothèses plus fortes :
 - f est intégrable car à t fixé on $|f(t)| = \lim_{n \to \infty} |f_n(t)| \leqslant \phi(t)$ intégrable.
 - Par définition, $\int_I \phi = \lim \int_J \phi$ où J est un segment dont les bornes tendent vers celles de l'intervalle I; donc il existe un segment $J \subset I$ tel que $\int_{I \setminus I} \phi = \int_I \phi \int_I \phi \leqslant \epsilon$ donné.
 - En supposant de surcroît qu'il y a convergence uniforme de fn vers f sur tout segment (allez voir le lemme de Cousin sur la toile), on a sur le segment J précédent

$$\exists n_0 \ \forall n \geqslant n_0 \quad \left| \int_J f - \int_J f_n \right| \leqslant \varepsilon$$

par le théorème d'intégration de la limite uniforme **sur un segment**. On a alors

$$\left| \int_{I} f - \int_{I} f_{n} \right| = \left| \left(\int_{J} f - \int_{J} f_{n} \right) + \left(\int_{I} f - \int_{J} f \right) - \left(\int_{I} f_{n} - \int_{J} f_{n} \right) \right|$$

$$\leq \int_{I \setminus I} |f| + \left| \int_{I} f - \int_{I} f_{n} \right| + \int_{I \setminus I} |f_{n}| \leq 2 \int_{I \setminus I} |\phi| + \left| \int_{I} f - \int_{I} f_{n} \right| \leq 3\varepsilon$$

ce qui donne bien la convergence.

- ullet Attention : le mot « dominé », dans ce contexte, n'a pas le sens d'un O (utiliser « contrôlé »), mais celui de « majoré en valeur absolue par ».
- Ce théorème permet de démontrer enfin simplement que, par exemple, $\int_0^{\pi/2} \sin^n t \, dt \to 0$ quand $n \to +\infty$, ce qui paraît évident mais ne l'est pas du tout sans ce nouvel outil. En fait, la suite de fonctions converge vers 0 géométriquement, mais comme on sait la suite d'intégrales converge lentement (en $n^{-1/2}$) donc ce n'était pas si évident que cela (et devient faux si on rajoute un n devant).
- Les théorèmes de convergence uniforme sur un segment apparaissent comme des cas particuliers de ces théorèmes de CV dominée : en effet, une suite uniformément convergente (d'applications continues) sur un segment y est dominée par une fonction constante! L'énoncé plus général est important :

THÉORÈME DE CONVERGENCE BORNÉE.

Soit (f_n) une suite de fonctions continues par morceaux qui converge simplement vers f continue par morceaux sur l'intervalle I **borné**. Si la suite $(\|f_n\|_{\infty})$ est bornée (i.e. dominée par une constante!) , alors f est bornée, intégrable et surtout

$$\int_I f_n \to \int_I f$$

Exemple: On a ainsi sans calcul $\int_0^{\pi/2} \cos^n t \, dt \to 0$ car $\cos^n \to 0$ sur $]0,\pi/2]$ et 1 majore la suite de fonctions. Pourtant on n'a pas convergence uniforme. On peut donc voir le TCD comme un « théorème d'interversion limite-intégrale version 2.0 »!

2.2 Intégration terme à terme

On admet aussi le théorème suivant, d'emploi très fréquent.

THÉORÈME D'INTÉGRATION TERME à TERME V. 2.0.

Soit $(\sum u_n)$ une série de fonctions continues par morceaux sur I, intégrables, qui converge simplement vers une fonction f continue par morceaux. Si de plus la série $\sum \left(\int_I |u_n|\right)$ converge, on a l'intégrabilité de f et

$$\sum_{n\geqslant 0}\int_I u_n = \int_I \Bigl(\sum_{n\geqslant 0} u_n\Bigr)$$

Bien entendu, tout repose sur l'hypothèse $\sum \left(\int_I |u_n|\right) < +\infty$.

AtTeNtIon!!! Il ne suffit pas que $\sum \int_I u_n$ converge, comme le montre l'exemple suivant :

$$\sum_{n\geqslant 1} \left((n+1) \sin^n t - n \, \sin^{n-1} t \right) \cos t = -\cos t$$

or si la somme des intégrales sur $[0,\pi/2[$ est parfaitement définie et vaut 0, en revanche l'intégrale de la somme est -1. Qu'est-ce qui cloche? Le théorème ne s'applique pas, car quand on met les valeurs absolues DANS les intégrales on trouve une série qui diverge vers $+\infty$.

Démonstration. On ne sait jamais, je joins une démonstration partielle (qui résulte du TCD). Pour montrer que f est intégrable : en effet si l'on pose $\phi = |u_0| + \dots + |u_n| + \dots = \sum |u_n|$, il vient $|f| \leqslant \phi$ et donc

$$\int_{I} |f| \leqslant \int_{I} \phi = \int_{I} \sum_{n=0}^{\infty} |u_{n}| = \sum_{n=0}^{\infty} \int_{I} |u_{n}|$$

par convergence dominée (appliquée à la suite $s_n = |u_0| + \dots + |u_n| \le \varphi$).

Toujours par convergence dominée, mais appliquée à $S_n = u_0 + ... u_n$ sans les valeurs absolues (mais néanmoins dominée aussi par φ), on conclut à l'interversion.

Cette preuve contient une petite escroquerie, elle zappe l'existence et la nature de ϕ ... qui s'éclairera avec la notion d'intégrale de Lebesgue : en fait ϕ est définie *presque partout*, c'est à dire que la série des $\sum |u_n|$ ne peut pas diverger ailleurs que sur une partie riquiqui de I – une partie de *mesure* nulle.

Exemple:

$$(x>0) \qquad \int_0^{+\infty} \sum_{n>0} \frac{(-1)^n t^n e^{-t/x}}{(n!)^2} \, dt = \sum_{n>0} \int_0^{+\infty} \frac{(-1)^n t^n e^{-t/x}}{(n!)^2} \, dt = \sum_{n>0} \frac{(-1)^n x^{n+1}}{n!} = x.e^{-x}$$

la seule justification étant que $\sum\limits_{n\geqslant 0}\int_0^{+\infty} \frac{t^n e^{-t/x}}{(n!)^2}\,dt = \sum\limits_{n\geqslant 0} \frac{x^{n+1}}{n!}$ converge. Pratique, n'est-ce pas.

Un autre exemple : $\frac{\ln(1-t)\ln t}{t} = -\sum_{n\geqslant 0} \frac{t^n \ln t}{n+1}.$

Les termes de cette série sont tous positifs sur]0,1[, on peut omettre les valeurs absolues.

Par une intégration par parties, on calcule $\int_0^1 -\frac{t^n \ln t}{n+1} dt = \frac{1}{(n+1)^3}$ qui est bien le TG d'une série convergente. Donc

$$\int_0^1 \frac{\ln(1-t)\ln t}{t} dt = \sum_{n \ge 0} \frac{1}{(n+1)^3} = \zeta(3).$$

2.3 Intégrales dépendant d'un paramètre

L'hypothèse de domination donne des énoncés très agréables pour les intégrales dépendant d'un paramètre. À noter que l'intégrabilité, ou le caractère \mathcal{C}^{∞} de l'intégrande, sont loin de suffire :

 $la \ fonction \ \chi_{\mathbb{R}^*}: x \mapsto \int_{\mathbb{R}_+} x^2 e^{-x^2 t} \ dt = 1 \ ssi \ x \neq 0, \ et \ 0 \ si \ x = 0, \ n'est \ m\^eme \ pas \ continue \ en \ 0! \ (poser \ \mathfrak{u} = x^2 t)$

2.3.1 Continuité sous le signe

THÉORÈME (DE CONTINUITÉ SOUS LE SIGNE |).

Soit f une application de $A \times I$ dans \mathbb{C} , où A est une partie de \mathbb{R}^p telle que,

- f(x,t) est continue par rapport à x, et continue par morceaux par rapport à t;
- f est dominée par une fonction φ indépendante de x:

$$\forall (x, t) \in A \times I \qquad |f(x, t)| \leqslant \varphi(t)$$

où φ est une fonction positive, intégrable sur I.

Alors la fonction F définie par $F(x) = \int_{I} f(x, t) dt$ est continue sur A.

Démonstration. Remarquons déjà que, par domination, pour tout $x \in A$ la fonction $t \mapsto f(x,t)$ est intégrable sur I.

Montrons que pour toute suite (x_n) de A tendant vers x on a $F(x_n) \to F(x)$. En effet, on a vu en Topologie que cela équivaut à la continuité de F en x.

On pose $f_n(t)=f(x_n,t).$ Alors le théorème de convergence dominée s'applique : $|f_n(t)|\leqslant \phi(t)$ et donc quand n tend vers $+\infty$ on a $f_n(t) \to f(x,t)$ (par continuité de f à gauche) et donc $\int_{t}^{t} f(x_n,t) dt \to f(x,t)$

$$\int_{I} f(x,t) dt.$$

La continuité étant une propriété locale, on a le

COROLLAIRE 1. La même conclusion est encore vraie si l'hypothèse de domination est vérifiée seulement sur tout compact inclus dans A (typiquement si A est un intervalle de \mathbb{R} , il suffit de vérifier la domination sur tout segment \subset A. Cas très fréquent en pratique).

Exemple: la fonction Gamma définie par $\Gamma(x) = \int_0^{+\infty} t^{x-1} e^{-t} dt$ est continue sur [1,n], comme on le voit en majorant l'intégrande. le voit en majorant l'intégrande par la fonction e^{-t} (voire par 1...) pour $t \in [0,1]$ et e^{-t} tⁿ pour t > 1: cette fonction est intégrable (comparer à $1/t^2$ comme d'habitude) et le théorème s'applique. La relation de récurrence $\Gamma(x+1) = x \Gamma(x)$ permet d'en déduire la continuité sur]0,1]. Finalement, on la continuité de Γ sur $]0,+\infty[$. On peut même en déduire un équivalent quand $x\to 0^+$, lequel?

EXERCICE 2. Démontrer directement la continuité sur]0,1] à l'aide de segments bien choisis.

Enfin on a le cas simple des fonctions continues quand I est un segment, car on peut dominer par une fonction constante (quitte à restreindre A à un compact). Il faut mentionner cet argument à chaque fois, car l'énoncé suivant est hors-programme :

COROLLAIRE 2. Si I est un segment et si f est continue sur $A \times I$ alors F est continue sur A.

Exemple: Par exemple, $x \mapsto \int_0^{\pi} \ln(1 + x \sin^2 t) dt$ est continue sur \mathbb{R}_+ par le corollaire.

EXERCICE 3. Montrer la continuité sur $]-1,+\infty[$ et même sur $[-1,+\infty[$.

REMARQUE 5. Le théorème ne contient hélas pas le cas où $x \to \pm \infty$ (bien que la démonstration soit identique). Dans le cadre du programme, il est toléré d'admettre que cela marche quand même. Cela se prouve par l'artifice suivant :

- On prend une suite (x_n) quelconque qui tend vers ∞ , et on applique le théorème de convergence dominée à $g_n : t \mapsto f(x_n, t)$.

— On en déduit, vu que $F(x_n)$ converge dès que $x_n \to \infty$, que F admet une limite en ∞ . Par exemple, on prouve ainsi que $\int_0^\infty \frac{e^{ixt}}{1+x^2t^2}\,dt \to 0$ quand $x \to \pm \infty$.

2.3.2 Dérivation sous le signe somme

Attention! comme pour les théorèmes sur la convergence uniforme, les hypothèses portent surtout sur la dérivée. Si elles ne sont pas satisfaites on a des contre-exemples :

1. Par changement de variable on a vu que

$$F(x) = \int_0^\infty \frac{\sin(xt)}{t} dt = \frac{\pi}{2} \operatorname{sgn}(x)$$

En particulier F' est nulle (sauf en 0). Mais la dérivation "à l'arrache" donnerait F'(x) = $\int_{-\infty}^{\infty} \cos(xt) dt \text{ qui ne converge pas.}$

2. Plus troublant, si on pose $F(x) = \int_0^1 f(x,t) dt$ où $f(x,t) = \frac{x^3 t}{(x^2 + t^2)^2}$ pour $(x,t) \neq (0,0)$, il vient

$$\forall x \neq 0 \ F(x) = \int_{x^2}^{1+x^2} \frac{x^3}{2y^2} \, dy = \frac{x}{2(1+x^2)}$$

et comme $F(0) = \int 0 = 0$, la formule est générale (et F est DSE, no less!).

En particulier F'(0) existe et vaut 1/2.

Mais si l'on calcule $\int_{\Lambda}^{1} \frac{\partial f}{\partial x}(x,t)\,dt$, il vient, après simplification :

$$\forall x \neq 0 \quad F'(x) = \int_0^1 \frac{t \left(3t^2x^2 - x^4\right)}{\left(t^2 + x^2\right)^3} \, dt \left(= \frac{x^2 - 1}{2(x^2 + 1)^2} \right)$$

tandis que $\frac{\partial f}{\partial y}(0,t) = 0$, et "donc" F'(0) = 0! Il faut clairement serrer les boulons ici.

THÉORÈME DE LEIBNIZ.

Soit f une application de $A \times I$ dans \mathbb{R} ou \mathbb{C} , où A désigne cette fois un intervalle de \mathbb{R} , telle

Pour tout $x \in A$, la fonction $t \mapsto f(x,t)$ est continue par morceaux **et intégrable sur** I, $\frac{\partial f}{\partial x}$ existe et vérifie les hypothèses du théorème précédent (continue par rapport à x, continue par morceaux par rapport à x, dominée par une fonction φ intégrable

Alors $F: x \mapsto \int_{I} f(x, t) dt$ est de classe C^{1} sur A, et l'on a

$$F'(x) = \int_{T} \frac{\partial f}{\partial x}(x, t) dt$$

Démonstration. On considère une suite de segments I_n inclus dans I, qui tende vers I (si I=]a,b] $\text{pour fixer les idées, on pose } I_n =]\mathfrak{a}_n, \mathfrak{b}_n] \text{ avec } \mathfrak{a}_n \searrow \mathfrak{a}, \mathfrak{b}_n = \mathfrak{b} \text{). On définit } F_n(x) = \int_{I_n} f(x,t) \, dt.$

LEMME 1. F_n est de classe \mathcal{C}^1 et $F_n'(x) = \int_{I_n} \frac{\partial f}{\partial x} \, dt$ (théorème de Leibniz pour une fonction \mathcal{C}^1 sur un segment).

Ce lemme n'est pas au programme, mais il est un cas particulier simple et à retenir, facilement puisqu'il n'y a pas d'autre hypothèse que la classe \mathcal{C}^1 et l'intégrale sur un **segment**. Par définition:

$$\frac{F_n(x) - F_n(a)}{x - a} = \int_{I} \frac{f(x, t) - f(a, t)}{x - a} dt$$

Prolongeons $h(x,t)=\frac{f(x,t)-f(\alpha,t)}{x-\alpha}$ par continuité quand $x=\alpha$ par la valeur $h(\alpha,\alpha)=\frac{\partial f}{\partial x}(\alpha,t)$: on obtient une fonction continue sur $A\times I_n$. Quitte à restreindre A à un compact contenant α , on a une

fonction continue sur un produit de compacts, qui est donc un compact, et donc uniformément continue (théorème de Heine). Ceci signifie que pour tout $\varepsilon > 0$ on peut exhiber $\alpha > 0$ avec

$$\forall (x,t) \in A \times I_n \quad |x-\alpha| \leqslant \alpha \Rightarrow \left| \frac{\partial f}{\partial x}(\alpha,t) - \frac{f(x,t) - f(\alpha,t)}{x-\alpha} \right| \leqslant \frac{\epsilon}{b_n - a_n}$$

On en tire que $\left| \frac{F_n(x) - F_n(\alpha)}{x - \alpha} - \int_{I_n} \frac{\partial f}{\partial x}(\alpha, t) \, dt \right| \leqslant \epsilon$ ce qui démontre le lemme. Reste à passer à la limite $I_n \to I$. Pour utiliser le théorème de la dérivation d'une suite de fonctions,

LEMME 2. La suite F'_n converge uniformément sur (le compact) A vers $\int_{\sqrt{\partial x}}^{\sqrt{\partial t}} dt$.

Ceci utilise l'hypothèse de domination des dérivées. En effet

$$\left| \int_{I} \frac{\partial f}{\partial x} \, dt - \int_{I_{I_{I}}} \frac{\partial f}{\partial x} \, dt \right| \leqslant \left(\int_{I} - \int_{I_{I_{I}}} \right) \phi \leqslant \epsilon$$

pour n assez grand, car $\int_{I_n}^{b_n} \varphi = \int_{a_n}^{b_n} \varphi \to \int_{a}^{b} \varphi$.

Il n'ya plus qu'à observer qu'on a convergence simple de $\int_{I_n} f(x,t) dt$ vers F(x) pour appliquer le théorème de dérivation d'une suite de fonctions et conclure

 $\textbf{\textit{Exemple}} : La \text{ dérivée de } \Gamma \text{ est } \int_0^{+\infty} \ln t. t^{x-1}. e^{-t} \, dt.$ En effet, l'intégrande de cette nouvelle intégrale est dominé par $\phi : t \mapsto \left\{ \begin{array}{ll} -\ln t. e^{-t} & (0 < t < 1) \\ \ln t. t^{n-1}. e^{-t} & (t \geqslant 1) \end{array} \right.$ pour $x \in [1,n]$ (noter la restriction de A à un segment...), et φ est intégrable en 0 et en $+\infty$ $(= O(e^{-t/2})).$

— Montrer de façon similaire cette formule sur]0, 1].

— Montrer que Γ est \mathcal{C}^{∞} , et calculer sa dérivée $\mathfrak{n}^{\text{ième}}$. Esquisser son graphe sur $]0,+\infty[$ (on observera que $\Gamma(x) \sim 1/x$ en 0^+).

Exemple: Reprenons $F(x) = \int_0^{\pi} \ln(1+x\sin^2 t) dt$. On considère pour x > -1 la dérivée de l'intégrande par rapport à x, soit $\frac{\sin^2 t}{1 + x \sin^2 t}$. C'est une fonction \mathcal{C}^{∞} des deux variables, ce qui est plus qu'il n'en faut! Et on peut la majorer **indépendamment de** $x \ge a > -1$ par $\frac{1}{1 + a \sin^2 t}$ qui est intégrable sur $[0,\pi]$ (notez la réduction de l'intervalle de travail). Donc le théorème de LEIBNIZ s'applique :

$$F'(x) = \int_0^{\pi} \frac{\sin^2 t}{1 + x \sin^2 t} dt = \frac{\pi}{x \sqrt{1 + x}} (\sqrt{1 + x} - 1) = \frac{\pi}{\sqrt{1 + x} (\sqrt{1 + x} + 1)}$$

On peut même en déduire la valeur exacte de

$$F(x) = \int_0^x \frac{\pi}{\sqrt{1+x}(\sqrt{1+x}+1)} dx = 2\pi \ln[1+\sqrt{1+x}] - 2\pi \ln 2$$

en prenant garde à la condition F(0) = 0. Cette expression reste valable en x = -1 puisqu'on a vérifié que F est continue sur $[-1, +\infty[$, d'où le résultat non trivial

$$\int_0^{\pi} 2\ln|\cos t| \, dt = 4 \int_0^{\pi/2} \ln(\cos t) \, dt = F(-1) = -2\pi \ln 2.$$

COROLLAIRE 3. Si f, toujours définie sur $A \times I$, est de classe C^k par rapport à la variable x, si toutes les $\frac{\partial^p f}{\partial x^p}$ sont continues par morceaux par rapport à t **et intégrables** sur I pour $p = 0 \dots k-1$; et si enfin $\left|\frac{\partial^k f}{\partial x^k}(x,t)\right|\leqslant \phi(t)$ pour une certaine fonction intégrable ϕ , alors F est de classe \mathcal{C}^k et ses dérivées d'ordre $p=1\dots k$ sont

$$F^{(p)}(x) = \int_{I} \frac{\partial^{p} f}{\partial x^{p}}(x, t) dt$$

Exemple: En déduire la dérivée k^{eme} de Γ . Ce Corollaire évite de se farcir la récurrence à chaque fois qu'on veut montrer qu'une fonction définie par une intégrale est \mathcal{C}^{∞} .

EXERCICE 5. Le programme ne traite plus de l'intégration de $F(x) = \int_{x}^{x} f(x,t) dt$, mais pourquoi se priver de regarder ce qui se passe au moins dans le cas de segments?

$$\phi(x) = \int_a^b \left(\int_c^x f(u, v) \, du \right) dv \quad \text{et} \quad \psi(x) = \int_c^x \left(\int_a^b f(u, v) \, du \right) dv$$

où f est une fonction continue sur le rectangle $[a,b] \times [c,d]$ et $x \in [c,d]$. Montrer que l'on peut dériver ϕ et ψ , calculer leurs dérivées et en déduire que

$$\int_a^b \int_c^d f = \int_c^d \int_a^b f.$$

 $\begin{tabular}{ll} \textbf{Exprimer la dérivée } n-1 \\ \hline \end{tabular} & \begin{array}{l} dt \\ \hline (t^2+1)^n, n \in \mathbb{N}. \ \textit{Qui peut le plus.} \ . \end{array} \\ & \begin{array}{l} \text{Exprimer la dérivée } n-1 \\ \hline \end{tabular} & \begin{array}{l} dt \\ \hline \end{tabular} & \begin{array}{l} \text{pour } a>0, \ calculer } f(a) \ \ et \ conclure. \end{array} \\ \end{array}$